
www.manaraa.com

Int. J. Advance Soft Compu. Appl, Vol. 12, No. 2, July 2020

ISSN 2074-8523; Copyright © ICSRS Publication, 2020

www.i-csrs.org

Improving Bug Localization using IR-based

Textual Similarity and Vectorization Scoring

Framework

Ginika Mahajan and Neha Chaudhary

Manipal University Jaipur

e-mail: ginika.mahajan@jaipur.manipal.edu

Manipal University Jaipur

e-mail: chaudhary.neha@jaipur.manipal.edu

Abstract

 The major challenge faced by software industry is meeting
deadlines in delivering quality product. The major reason behind
delays is not only development part but basically detection and
finding of bug or error. Whenever a bug is reported, developers use
bug reports to reach to the code fragments that need to be modified
to fix the bug. Suitable semantic information is present in bug
reports and developers start exhaustive searching manually to catch
the bug location. To minimize this manual effort, a framework on
Information retrieval based bug localization is proposed that exploits
the textual content of bug report to provide the rank relevant buggy
source files i.e. the file having higher probability of occurrence of
bug. The dataset used consists of a total of 925 bugs from 4 project
categories SWT, ZXing, Eclipse and AspectJ. This framework
outputs the Top N, here top (related) terms top 5 ranked sequence
terms, showing the file containing these terms having higher
probability of occurrence of bug.

 Keywords: Bug Localization, Bug Report, Information Retrieval, LDA,
Vectorization Scoring Model

1 Introduction

In software industry, bug localization has become a necessary activity to deliver
projects with quality on time. Bug localization is a substantial task during various
phases of software cycle in software testing, maintenance and quality assurance.
Locating bugs is significant, challenging, and expensive, particularly for large-
scale systems. Many times developers are not able to locate the root of bugs and
hence lot of time and effort is wasted in finding the bugs manually. Hence bug
localization has become an essential activity in software industry as to automate
the process of finding the bugs.

www.manaraa.com

M. Ginika et al. 24

Automatic localization of buggy files can speed up the process of bug fixing to
improve the efficiency and productivity of software quality assurance team [1]. To
address this, information retrieval techniques are increasingly being used to
suggest potential faulty source files using bug reports. Researchers are working on
numerous techniques and approaches of bug localization. Unfortunately, none of
the technique contributes to 100% accuracy. But getting nearby location of bug
helps software team to find the bugs with less effort and time.

Bug Localization (BL) process has two approaches- Information Retrieval-based
BL and Spectrum- based BL. The basic variance is in the kind of input these
approaches use, one is using bug reports and other program spectrum. The
program entities that are intensely related with failures are identified as
“suspicious”, so that developers can examine them to see if they are faulty. The
other way is to use bug reports that contains description about the bugs
encountered. Figure 1 shows the bug localization overview where input can be bug
report or source code entity. The output is the ranked list of program elements that
are likely to contain bug.

Fig. 1. Bug Localization Overview

2 Related Work

In recent years, researchers are working on various bug localization approaches using

various techniques. The survey here is by no means complete. Comparison has been made

on the basis of techniques, results and datasets used which is shown in Table 1.

A. Lam et al. [2] addressed a new approach DNNLOC which works on deep neural

network (DNN) and rVSM IR technique. They used rVSM to collect the features based

on text relationship. In this approach, DNN is used to match the terms in bug reports to

different code tokens and terms in files. They found that by using these two approaches

together they are able to achieve higher bug localization accuracy.

R. Gharibi et. al. [3] proposed a multi-component bug localization approach that works

on various text properties of bug reports and source files. Also they are able to get

relation between previously fixed bug report and a newly received bug report. They

worked with text matching, stack trace analysis, and multi-label classification to improve

the performance. It shows improvement in ranked list, MRR and MAP values compared

to several existing bug localization approaches.

www.manaraa.com

25 Improving Bug Localization using IR-based …

A. Kukkar and R. Mohana [4] proposed a hybrid approach wherein they merged the

domains of text mining, NLP and ML to identify bug report as bug or non-bug. In their

work, they used TF-IDF and Bigram methods to extract features and give classification

results using K-nearest neighbor classifier. They worked on five different datasets of bug

reports and evaluated accuracy based on Precision, Recall and F-measure values by using

five datasets. Also its observed that using bigram method improves the performance of

KNN classifier.

Yu Zhou et. al [5] proposed an approach that works in three stages where in the first stage

summary part of bug report is used in Multinomial Naive Bayes Classifier. In the next

stage these, now structured features, are used for prediction that can then be analyzed

using Bayesian Net Classifier. And in last stage data grafting is done two bridge the two

stages. Comparative experiments show enhancement (from 77.4% to 81.7%, 73.9% to

80.2% and 87.4% to 93.7%, respectively) in terms of overall performance.

T. Dao et al. [6] in their empirical study investigated dynamic execution information such

as coverage, slicing, and spectrum information that can help with IR-based bug

localization. They have cleansed the ranked list of suspicious localities produced by IR-

based technique. They compared their results with previous baseline technique,

BugLocator, and BLUiR and got better results.

K.Youm et al. [7] designed a combined method to integrate all the analyzed data to

enhance the bug localization accuracy. BLIA is a statically integrated analysis approach

of IR-based bug localization where it used texts and stack traces in bug reports, structured

information of source files, and code change histories. Results shows that BLIA gave

better results in terms of mean average precision when compared with existing tools

BugLocator, BLUiR, BRTracer and AmaLgam.

Xin Ye and Chang Liu [8] introduced an adaptive ranking approach that worked on

various parameters including bug fixing history, code change, dependency graph, API

descriptions and functional decomposition of the program code. This approach also

considered before fix version of bug report for better analysis. The authors used Learning

to rank approach whose results proved that it outperforms other methods of bug

localization.

R. Saha et.al [9] worked on C programs to find the effectiveness of IR based Bug

localization on projects other than object oriented programming. In this paper they have

created a dataset consisting of around 7500 bug reports from five popular C projects. The

results showed that IR-based bug localization in C at the file level is overall as effective

as in object oriented projects.

S. Thomas et al. [10] introduced a framework that combines the results of multiple

classifier configurations as classifier combinations has shown promising results in other

software domains. Also this paper empirically investigated around 3172 large space

classifier and showed that the parameters of a classifier and combination of multiple

classifiers improves the performance.

www.manaraa.com

M. Ginika et al. 26

Table 1 Comparison of dataset and techniques used in Bug Localization

Reference Dataset Technique

[2]

AspectJ

Birt

Eclipse UI

JDT

SWT

Tomcat

DNN and rVSM

[3] AspectJ

SWT

ZXing

Information Retrieval, Textual matching, Stack trace analysis,

and Multi-label classification

[4] Mozilla

Eclipse

JBoss

Firefox

OpenFOAM

TF-IDF, Bigram and K-nearest neighbor (K-NN) classifier

[5] Mozilla

Eclipse

JBoss

Firefox

OpenFOAM

Multinomial Naive Bayes Classifier and Bayesian Net Classifier

[6] AspectJ

Ant

Lucene

Rhino

Dynamic execution information- coverage information, slicing

information, and spectrum information.

[7] AspectJ

SWT

ZXing

Texts and stack traces in bug reports, structured information of

source files, and source code change histories

[8] Eclipse

JDT9

Birt10

SWT11

Tomcat12

AspectJ13

Learning to Rank

[9] C projects

Python 3.4.0

GDB 7.7

WineHQ 1.6.2

GCC 4.9.0

Linux Ker

Adapted BLUiR for C code

[10] Eclipse JDT

IBM Jazz

Mozilla mailnews

Multiple Classifier Configurations

www.manaraa.com

27 Improving Bug Localization using IR-based …

 3 Background

Information Retrieval-based Bug Localization

Developers commonly receive bug reports in huge number and debugging these
reports manually is a challenging task that consumes much resources. Information
Retrieval is a system of tracking and recovering specific information from stored
data. It is an activity of obtaining information system resources relevant to an
information needed from a collection [12].

IR-based bug localization assists developers in locating buggy source code entities
(e.g., files and methods) based on the content of a bug report. IR-based bug
localization techniques use query and document to get the relevance of document
with query. Here query is taken as bug report and document as program elements.
Figure 2 diagrammatically explains the basic overview of IR based BL wherein
bug reports are taken as input and output program entities. The perception behind
using these techniques is that program entities share various common terms with
bug report and hence are possibly be relevant to the bug. Then, Accordingly the
program elements are then ranked and sent to developers [3]. Developers then
manually inspect output to locate source code segments that should be modified in
order to fix the bug. Figure 3 shows a sample bug report used in this paper.

Fig. 2. IR-based Bug Localization [4]

Fig. 3. A sample bug report

www.manaraa.com

M. Ginika et al. 28

4 The Proposed Method

With an objective to reduce developer’s efforts and time in localization of bugs,

this work proposes a novel Bug Localization framework based on Information

Retrieval that uses Bug Reports as input and outputs a ranked sequence of terms

of file names. This ranked sequence can be used by the developers to find the root

cause file of the bug. Thus, this bug resolution activity will require considerably

less time and effort to reach the bug and hence will be useful in improving the

software quality and ensures its integrity.

This framework converts text data to features and features to vectors. We have

implemented two models for feature representation, and a topic model that have

been used in the field of information retrieval (IR). He framework is shown in

figure 4 and its steps are explained in experimentation section.

Fig. 4. Framework of proposed work

www.manaraa.com

29 Improving Bug Localization using IR-based …

5 Results, Analysis and Discussions

The dataset consists of a total of 925 bugs from 4 project categories: SWT, ZXing,

Eclipse and AspectJ shown in Table 2. Sample bug report is shown in Fig 3 which

contains information of bug in the form of bug Id, opendate, fix date, summary,

description and fixed file.

Table 2 Dataset used

The following steps are integrated and implemented to automate the proposed

framework of Bug Localization:

Step 1: Data Collection

The dataset collected was in .xml format. For processing the bug report, this

framework requires data in .csv format. Hence dataset is converted to .csv format

and only required features are taken rest are removed. Figure 5 shows the

converted and cleaned dataset with features bugId, fixed file, summary and

description.

Fig. 5. Cleaned dataset in .CSV format

Step 2: Pre-processing

Pre-processing is the next phase to process and clean the input data in required

form. Tokenization is performed to obtain groups of words which is followed by

removal of all common separators, operators, punctuations and non-printable

characters. Further filtering of stopwords that aims to get the most frequent terms

is performed. Finally, stemming is applied to obtain the main words.

Project Number of Bugs

Eclipse 356

SWT 198

AspectJ 287

ZXing 84

www.manaraa.com

M. Ginika et al. 30

Step 3: Feature Representation and BoW Model

Bag of Words (BoW) model in IR represents text according to occurrence of

terms in a file. If a term occurs in the document, then its value becomes non-zero

in the vector and count increases as per its frequency of occurrence. We have

applied CountVectorizer that converts a collection of text corpus to a matrix of

term counts.

Step 4: Vectorization and Scoring Model

In this phase vectorization is done and TF-IDF are calculated. TF refers to Term

Frequency and IDF refers to Inverse Document Frequency. Scoring Model uses

these two metrics in its computation. Mathematical equations of TF x IDF is as

follows [11]:

 TF x IDF score for term “i” in document “j” = TF(i, j) * IDF(i)

 TF(i, j) = (Term i frequency in document) / (Total terms in document)

 IDF(i) = log2(Total documents / documents with term i)

For vectorization of of TF-IDF features, we have used TfidfVectorizer.

Fig. 6. Feature Representation

Step 5: Latent Dirichlet Allocation

LDA is a statistical model that allows sets of observations to be explained by

unobserved groups that explain why some parts of the data are similar [4]. Here

Topics are represented as a collection of terms. They are very valuable to

summarize large corpus of text documents and further they reveal latent patterns

in the data. Here we get four topics as shown in Fig 7 containing the Top N, here

top (related) terms top 5 ranked sequence terms, showing the file containing these

terms has higher probability of bug and hence is considered as root cause or most

probable location of respective bug.

www.manaraa.com

31 Improving Bug Localization using IR-based …

Fig. 7. Input and output representation of framework

6 Conclusion and Future Work

The key challenge software industry is facing is of often shipping the product with

defects and not meeting the deadlines. Fixing the defect or bug is not a big issue

but the major time is consumed is reaching and locating the root of bug. To

minimize the manual effort, this framework is proposed that exploits the textual

content of bug report to provide the rank relevant buggy source files i.e. the file

having higher probability of bug. This work can be extended in getting more

precise file paths and further applying learning to rank using RankLib tool to give

better ranking results.

References

[1] Saha, R. K., Lease, M., Khurshid, S., & Perry, D. E. (2013, November). Improving

bug localization using structured information retrieval. In 2013 28th IEEE/ACM

International Conference on Automated Software Engineering (ASE) (pp. 345-355). IEEE.

[2] Lam, A. N., Nguyen, A. T., Nguyen, H. A., & Nguyen, T. N. (2017, May). Bug

localization with combination of deep learning and information retrieval. In 2017

IEEE/ACM 25th International Conference on Program Comprehension (ICPC)(pp. 218-

229). IEEE.

[3] Gharibi, R., Rasekh, A. H., Sadreddini, M. H., & Fakhrahmad, S. M. (2018).

Leveraging textual properties of bug reports to localize relevant source files. Information

Processing & Management, 54(6), 1058-1076.

www.manaraa.com

M. Ginika et al. 32

[4] Kukkar, A., & Mohana, R. (2018). A Supervised Bug Report Classification with

Incorporate and Textual field Knowledge. Procedia computer science, 132, 352-361.

[5] Zhou, Y., Tong, Y., Gu, R., & Gall, H. (2016). Combining text mining and data

mining for bug report classification. Journal of Software: Evolution and Process, 28(3),

150-176.

[6] Dao, T., Zhang, L., & Meng, N. (2017, May). How does execution information help

with information-retrieval based bug localization?. In Proceedings of the 25th

International Conference on Program Comprehension (pp. 241-250). IEEE Press.

[7] Y. oum, K. C., Ahn, J., & Lee, E. (2017). Improved bug localization based on code

change histories and bug reports. Information and Software Technology, 82, 177-192

[8] Ye, X., Bunescu, R., & Liu, C. (2016). Mapping Bug Reports to Relevant Files: A

Ranking Model, a Fine-Grained Benchmark, and Feature Evaluation. IEEE Transactions

on Software Engineering, 42(4), 379–402.

[9] Saha, R. K., Lawall, J., Khurshid, S., & Perry, D. E. (2014, September). On the

effectiveness of information retrieval based bug localization for c programs. In 2014

IEEE International Conference on Software Maintenance and Evolution (pp. 161-170).

IEEE.

[10] Xia, X., Lo, D., Wang, X., Zhang, C., & Wang, X. (2014, June). Cross-language bug

localization. In Proceedings of the 22nd International Conference on Program

Comprehension (pp. 275-278). ACM.

[11] Khatiwada, S., Tushev, M., & Mahmoud, A. (2018). Just enough semantics: An

information theoretic approach for IR-based software bug localization. Information and

Software Technology, 93, 45–57.

Notes on contributors

Ginika Mahajan is Assistant Professor at the

Department of Information Technology, Manipal

University Jaipur, India. Her main teaching and

research interests include Software Testing, Machine

Learning and Text Mining. She has published several

research articles in international journals of software

engineering.

Dr. Neha Chaudhary is Associate Professor at the

Department of Computer Science and Engineering,

Manipal University Jaipur, India. Her main teaching

and research interests include Software Testing,

Quality Assurance, Data Mining and Data

warehousing. She has published several research

articles in international journals of software

engineering.

www.manaraa.com

Copyright of International Journal of Advances in Soft Computing & Its Applications is the
property of International Center for Scientific Research & Studies and its content may not be
copied or emailed to multiple sites or posted to a listserv without the copyright holder's
express written permission. However, users may print, download, or email articles for
individual use.

